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Abstract Computational evaluation of ligand-receptor
binding via docking strategy is a well established approach
in structure-based drug design. This technique has been ap-
plied frequently in developing molecules of biological inter-
est. However, any procedure would require an optimization
set up to be more efficient, economic and time-saving. Advan-
tages of modern statistical optimization methods over conven-
tional one-factor-at-a-time studies have been well revealed.
The optimization by experimental design provides a combi-
nation of factor levels simultaneously satisfying the require-
ments considered for each of the responses and factors. In this
study, response surface method was applied to optimize the
prominent factors (number of genetic algorithm runs, popula-
tion size, maximum number of evaluations, torsion degrees
for ligand and number of rotatable bonds in ligand) in Auto-
Dock4.2-based binding study of small molecule [3-secretase
inhibitors as anti-alzheimer agents. Results revealed that a
number of rotatable bonds in ligand and maximum number
of docking evaluations were determinant variables affecting
docking outputs. The interference between torsion degrees for
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ligand and number of genetic algorithm runs for docking
procedure was found to be the significant interaction term in
our model. Optimized docking outputs exhibited a high cor-
relation with experimental fluorescence resonance energy
transfer-based ICsos for B-secretase inhibitors (R?=0.9133).
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Docking - Optimization

Introduction

Alzheimer disease (AD) affects a significant number of
people all over the world [1]. Amyloid cascade hypothesis
has received much attention in development of pharmaco-
logically active anti-alzheimer agents [2]. The hypothesis
suggests that aggregation of Af34, and Af34, oligopeptides
and subsequent formation of neurotoxic polymeric plaques
in the brain are significant features common in most patients
involved with AD. Proteolytic action on a large trans-
membrane protein; amyloid precursor protein (APP), by
two enzymes namely {3 and y-secretases results in secretion
of AP40 and A4, peptides [3, 4]. [3-secretase (Beta-site
APP cleaving enzyme or BACE-1) is a type I membrane-
associated aspartyl protease [2], which has been considered
to be an attractive therapeutic target in AD due to the
following reasons:

— The enzyme catalyzes the first step of A3 production.
The enzyme is mainly expressed in the brain.
— The enzyme is selective in its proteolytic activity.

Development of specific inhibitors of this key protease
has been regarded as a major therapeutic challenge in AD
treatment and many research groups have focused on devel-
opment of BACE-1 inhibitors [5, 6]. However; the process
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of drug development is challenging. It is time consuming,
expensive, and requires tedious steps. To overcome these
problems to some extent, virtual drug design approaches seem
to be trying to provide cost- and time-efficient procedures [7].

In this regard, availability of a significant amount of crys-
tallographic data on Protein Data Bank facilitated the perfor-
mance of structure based drug discovery projects aiming at
BACE-1 as a molecular target for Alzheimer disease (Broo-
khaven protein databank website. http:/ www.pdb.org). Dock-
ing is an important in silico structure based drug design
technique which has been used to recognize correct spatial
poses of ligands in the active site of receptors while at the
same time predicting the affinity between ligand and protein
[8]. In other words, docking describes a process to determine
steric fit of ligand and receptor in terms of their geometric
complementarily and optimum interaction profile [9].

Molecular docking has contributed much to drug discov-
ery efforts and several drugs have been developed currently
on the market [10]. AutoDock is a type of docking programs
which has offered several fruitful advantages in drug design
field (The AutoDock website. http://autodock.scripps.edu)
[11, 12]. Moreover; AutoDock has been the most cited
docking program in the literature up to the year 2005 [13].

Docking procedure like any other process would require
an optimized condition to be more efficient, economic and
time-fluent. There are several practical parameters that
should be considered in a typical AutoDock procedure af-
fecting the docking results. Optimization of a process can be
done via several ways. Classic optimization method can be
performed by varying any one of the process parameters and
keeping the other parameters constant. When multiple var-
iables are involved in a system, this technique becomes
unproductive and time consuming. The modern statistical
designs, namely design of experiments (DOE) consider all
factors simultaneously and hence provide the possibility for
evaluation of the whole effect all at once.

Response surface methods (RSM) have been designed
for factors with more than three levels in which quadratic
models can be established [14, 15]. Several prosperous
reports of drug related RSM applications can be found in
the literature [16-21]. Quantifiable response is one of the
most important steps in a typical DOE. The most popular
RSMs are Central composite, Box-Behnken and Doehlert
designs [22, 23].

In the present study, we aimed to estimate the factor
effects on Autodock 4.2-based docking output and optimize
the effective factors on docking procedure of BACE-1
inhibitors. For this purpose, Box-Behnken method was ap-
plied to investigate the effect of the number of genetic
algorithm runs, population size, maximum number of eval-
uations, torsion degrees for ligand and number of ligand
active torsions on docking binding energy. Optimum dock-
ing conditions were interpreted. Subsequent regression
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analysis with known biological data for small molecule
BACE-1 inhibitors was performed to validate the optimized
docking procedure.

Materials and methods
Docking studies

Flexible-ligand docking studies were done by AutoDock4.2
program [24]. All the pre-processing steps for ligand and
receptor crystallographic files were performed within
WHAT IF server (European Molecular Laboratory Heidel-
berg, Germany) and AutoDock Tools 1.5.4 program (ADT)
which has been released as an extension suite to the Python
Molecular Viewer [24, 25]. All hydrogens were properly
added to the receptor PDB file using What if server. ADT
program was used to merge non-polar hydrogens into relat-
ed carbon atoms of the receptor and Kollman charges were
also assigned. For docked ligands, non-polar hydrogens
were added; Gasteiger charges assigned and torsions
degrees of freedom were also allocated by ADT program.
Desirable independent genetic algorithm (GA) runs were
considered for each ligand under study. For Lamarckian
GA method; 27,000 maximum generations; a gene mutation
rate of 0.02; and a crossover rate of 0.8 were used. A grid of
60x60x 60 points in X, y, and z direction was built centered
on the center of mass of the catalytic site of (3-secretase.
Cluster analysis was performed on the docked results using
an RMS tolerance of 2 A. Chemical structures of the ligands
under study with their relevant PDB codes are demonstrated
in Fig. 1.

Subsequent validation of optimized docking condition
was performed via docking of selected chemical scaffolds
(Fig. 2) into active site of [3-secretase enzyme.

Experimental design

All statistical analysis, modeling and numerical optimiza-
tion was performed using Design-Expert software-v.7
(State-Ease, Corp., Minnesota).

Five experimental factors were varied at three levels:
number of genetic algorithm runs, population size, maxi-
mum number of evaluations, torsions degrees for ligand
during docking procedure, and number of ligand rotatable
bonds (Table 1). These experimental factors were selected as
they were considered to have the most significant effect on
the efficiency of the method. The levels were chosen based
on knowledge of the system acquired from initial experi-
mental trials. The factors along with their assigned levels
were defined as input for Box-Behnken method in DOE
program. In our study, Box-Behnken matrix containing 46
solutions (docking protocols) were planned. Top ranked
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Fig. 1 Chemical structures of
selected BACE-1 inhibitors and
relevant PDB codes used for
RSM based optimization of
AutoDock4.2 procedure

20HQ

ligand-receptor binding energies (kcal.mol™) in AutoDock
dlg output file were considered as response to determine the
best combination of docking parameters.

The introduction of central points (docking protocols in-
cluding factors at their mid levels in the designed matrix)
provided a more precise estimate of experimental error and
enabled us to measure an adequacy of the model (lack of fit).
Analysis of variance (ANOVA) was done on the data to
determine the significant variables of the docking procedure.

For more detailed information on Box-Behnken design
basis and methodology, readers are referred to the previous
publication [26].

Results and discussion
Docking optimization

Knowledge on the optimized condition for docking proce-
dure can be established in a typical validation (self-docking)
study [27]. It is a commonly accepted practice to test dock-
ing performance on the studied system by re-docking the co-
crystallized conformation of a ligand provided that the rel-
evant PDB structure is present. Holo structures of the re-
ceptor which bear cognate ligand scaffolds are principal

Fig. 2 Chemical structures of
selected BACE-1 inhibitors and
relevant PDB codes used for
validation study of optimized
AutoDock4.2 procedure
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sources for this purpose [28]. Cosconati and coworkers have
pointed out several advantages of self-docking techniques
such as validation of the target preparation, establishment of
docking parameters and validation of the method for pre-
diction of the known binding pose [29].

In the present study, self-docking procedure between
BACE-1 inhibitors (Fig. 1) and specified holo {3-secretase
enzyme structures was optimized by considering five varia-
bles under study (Table 1). The factor levels used in our
experimental design were selected based on previous
knowledge and default values [24, 30]. Each factor was
considered in three levels. The assigned levels are given
by their actual values in Table 1.

To construct an approximation model that can capture
interactions between design variables, a Box-Behnken
design matrix was planned to investigate all possible
combinations of factors (Table 2) [31]. In our study,
Box-Behnken matrix contained 46 solutions. Top ranked
binding energies (kcal.mol™) in AutoDock dlg output
file were considered as a response in each run. It should
be noted that RMSD values below three could be con-
sidered as adoptable values [32].

Box-Behnken design provided fewer runs (46 runs) while
similar 3-level full factorial design for five factors included
243 experiments. A comparison between these two statistical
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Table 1 Levels of experimental factors used for AutoDock4.2 based
study of BACE-1 inhibitors

Factors under study Low Medium High
level level level

GA runs (A) 50 100 150

Population size (B) 50 150 300

Maximum number of 25%x10°  25x10°  1.0x107
evaluations (C)

Torsion degrees for ligand (D) 5 25 50
Ligand RTBs® (E) 4 3BRA) 6 (20HQ) 10 (2Q15)

# Rotatable bonds

methods reveals the Box-Behnken method to be more eco-
nomic, efficient and time fluent [33]. With the Box-Behnken
design methodology, major and interaction effects can be
easily evaluated. The major effect refers to the effect caused
by the varied factor, while the interaction effect is related to
the case in which the effect of one factor is dependent on the
value of another [34]. Analysis of variance (ANOVA) was
applied to realize the significant factors in the regression
model. Analysis of variance for response surface quadratic
model is shown in Table 3.

The result of experimentation should be a model which will
adequately predict the response within the design space. Re-
gression analysis of the experimental data showed that a qua-
dratic model (values of Prob > F less than 0.0001) could best fit
the relationship between the dependent variable (binding energy
of ligand to receptor) and independent variable terms. The
model F-value of 55.75 implied that the model was significant.
In the present study the "lack of fit F-value" of 0.80 implied that
the lack of fit was not significant relative to the pure error. Non-
significant lack of fit is good and the result of model fitness in
terms of regression coefficients are shown in Table 4. The
predicted R-squared of 0.9256 was in reasonable agreement
with the adjusted R-square of 0.9605. "Adeq precision" meas-
ures the signal to noise ratio. A ratio greater than 4 is desirable.
Ratio of 27.099 indicated an adequate signal therefore this
model could probably be applied to navigate the design space.

In the ANOVA analysis (Table 4), "Prob > F" values less
than 0.0500 indicate that the model terms are significant.
Values greater than 0.1000 indicate that the model terms
cannot be significant. According to the data, three main
effects [GA runs (A), maximum number of evaluations (C)
and number of rotatable bonds in ligand (E)] along with two
second-order main effects (AD and E?) were significant
model terms. However AC and CD interaction terms were
not significant but also not insignificant.

Number of active torsions in ligand which is defined by
number of rotatable single connections in the molecular frame-
work (factor E) was found to have the largest effect on re-
sponse. It is worth noting that the defaults given for AutoDock
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are sufficient for docking systems with ten or less rotatable
bonds (The AutoDock website; http://autodock.scripps.edu/).
We set levels of RTBs (rotatable bonds) based on this ratio-
nalization, while probably many significant effects for factor
E would be expected considering higher factor levels. Torsion
degree of ligand per step (factor D) showed nearly no mean-
ingful effect on binding process. The order of effective fac-
tors could be shown on the priority order of E>C>A>
B > D. Significant effects of "maximum number of evalua-
tions" and "GA runs" may be attributed to the opportunity to
optimize docking procedure provided by increasing these
terms. However in our opinion there should be a logic balance
between a docking precision and docking period especially in
the conditions where no automated and supercomputer facil-
ities are available. A much larger effect of factor E (number of
ligand rotatable bonds) on docking outputs implied that Auto-
Dock program may be extensively sensitive to the number of
active torsions in the docked ligand and interpretation of the
results for ligands possessing more rotatable bonds should be
done with care regarding this posed limitation. Lack of sig-
nificant sensitivity for factor D (torsion degrees for ligand)
may be interpreted by the fact that validation of docking
studies are performed using the cognate inhibitors from crys-
tallographic structures, where fitted pose of ligands will initi-
ate the docking procedure (unlike the cross-docking procedure
in which an external non-cognate ligand is docked). It is worth
noting that ligand torsion degrees per each step in cross-
docking procedure may probably be more determinant com-
pared to the case of self-docking study.

An interaction between factors is likely to occur if different
responses based on the settings of two factors are generated.
These two factors will appear with two non-parallel lines in
interaction plot, indicating that the effect of one factor depends
on the level of the other. Referring to Fig. 3, AD interaction
term versus binding energy can be well interpreted .

A cross point in the interaction plot can be interpreted in two
ways; if this point belongs to the unique inhibitor structure
processed under 105 GA runs (x: 0.1), different levels of factor
D (5 and 50 torsion degrees/step) would produce docking out-
puts with the same binding energies. In the case of supposing
different chemical scaffolds, two levels of factor D would lead
to the interaction patterns with the same binding energies.

There is one outlier design point which is located outside the
range of interaction lines. This point is related to the 6th run of
the designed matrix (GA run: 100, maximum number of eval-
uation: 2.5x 10°, population size: 150, torsion degrees/step: 25
and RTBs: 6). The starting point for ligand conformation state
in 6th docking run by 25 torsion degrees/step directed ligand in
a way to produce false positive binding energy (AG: -8.71
Kcal.mol ™). 3D surface interaction plot expressing significant
AD interaction is also depicted for more clarity (Fig. 4).

The perturbation plot of binding energy versus all modeled
variables was applied to evaluate the contribution of each factor
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Table 2 Box-Behnken design with actual and coded factor levels in AutoDock4.2 based study of BACE-1 inhibitors

Run  GA runs (A) Population size (B) Maximum number of  Torsion degrees for  Ligand Estimated binding energy RMSD (A)
evaluations (C) ligand (D) RTBs (E)  (kcal.mol™)
1 100 (0)° 300 (+1) 250000 (1) 25 (0) 6 (0) =7.37 1.96
2 100 (0) 50 (-1) 250000 (—1) 25 (0) 6 (0) =72 2.00
3 100 (0) 150 (0) 10000000 (+1) 25 (0) 4(-1) -6.27 1.91
4 100 (0) 50 (—1) 2500000 (0) 25 (0) 4(-1) —6.3 1.85
5 100 (0) 150 (0) 250000 (1) 51 6 (0) —6.8 2.20
6 100 (0) 150 (0) 2500000 (0) 25 (0) 6 (0) —8.71 2.11
7 50 (-1) 150 (0) 10000000 (+1) 25 (0) 6 (0) -8.8 1.85
8 100 (0) 150 (0) 10000000 (+1) 50 (+1) 6 (0) =791 1.81
9 150 (+1) 150 (0) 2500000 (0) 50 (+1) 6 (0) -7.75 1.86
10 50 (-1) 150 (0) 2500000 (0) 50 (+1) 6 (0) -8.79 1.91
11 100 (0) 150 (0) 2500000 (0) 25 (0) 6 (0) —8.09 1.70
12 150 (+1) 150 (0) 2500000 (0) 25 (0) 4(-1) —6.2 1.83
13 50 (-1) 150 (0) 2500000 (0) 5(¢1) 6 (0) —6.72 1.86
14 100 (0) 50 (—1) 2500000 (0) 51 6 (0) —8.83 0.48
15 100 (0) 150 (0) 2500000 (0) 25 (0) 6 (0) =7.7 1.54
16 100 (0) 300 (+1) 2500000 (0) 51 6 (0) —7.6 0.77
17 100 (0) 150 (0) 2500000 (0) 25 (0) 6 (0) -7.71 0.74
18 150 (+1) 50 (-1) 2500000 (0) 25 (0) 6 (0) —8.68 0.66
19 100 (0) 150 (0) 10000000 (+1) 5(¢1) 6 (0) -8.82 0.54
20 100 (0) 150 (0) 2500000 (0) 5(¢1) 10(+1) —-11.89 2.76
21 100 (0) 50 (1) 10000000 (+1) 25 (0) 10 (+1) —12.1 0.54
22 100 (0) 300 (+1) 2500000 (0) 25 (0) 4(-1) —6.19 1.93
23 150 (+1) 150 (0) 2500000 (0) 25 (0) 10(+1) -11.9 0.64
24 150 (+1) 150 (0) 2500000 (0) 25 (0) 10 (+1) -7.32 3.00
25 100 (0) 150 (0) 250000 (1) 50 (+1) 6 (0) —8.06 2.87
26 150 (+1) 150 (0) 250000 (—1) 25 (0) 6 (0) —5.87 1.88
27 100 (0) 150 (0) 250000 (—1) 25 (0) 4 (-1 —8.49 3.00
28 150 (+1) 150 (0) 2500000 (0) 51 6 (0) —8.55 2.51
29 100 (0) 50 (—1) 10000000 (+1) 25 (0) 6 (0) -5.95 1.97
30 50 (-1) 150 (0) 2500000 (0) 25 (0) 4(-1) -5.97 1.97
31 100 (0) 150 (0) 2500000 (0) 51 4(-1) -11.8 0.79
32 100 (0) 150(0) 250000 (1) 25 (0) 10(+1) —8.44 1.68
33 150 (+1) 150(0) 10000000 (+1) 25 (0) 6 (0) —7.48 1.13
34 50 (-1) 50 (-1) 2500000 (0) 25 (0) 6 (0) -8.4 1.27
35 150 (+1) 300 (+1) 2500000 (0) 25 (0) 6 (0) -12 0.62
36 50 (-1) 150 (0) 2500000 (0) 25 (0) 10 (+1) -5.97 1.92
37 100 (0) 150 (0) 2500000 (0) 50 (+1) 4 (-1 —8.55 2.12
38 100 (0) 300 (+1) 10000000 (+1) 25 (0) 6 (0) -7.23 2.46
39 50 (-1) 300 (+1) 2500000 (0) 25 (0) 6 (0) -8.5 3.00
40 100 (0) 50 (-1) 2500000 (0) 50 (+1) 6 (0) —6.89 2.09
41 50 (1) 150 (0) 10000000 (+1) 25 (0) 6 (0) —11.88 2.69
42 100 (0) 150 (0) 2500000 (0) 50 (+1) 10 (+1) -8.33 1.77
43 100 (0) 150 (0) 2500000 (0) 25 (0) 6 (0) —8.21 1.65
44 100 (0) 300 (+1) 2500000 (0) 50 (+1) 6 (0) —8.44 2.33
45 100 (0) 150 (0) 2500000 (0) 25 (0) 6 (0) -11.77 0.78
46 100 (0) 150 (0) 10000000 (+1) 25 (0) 10(+1) -12.04 0.64

? Rotatable bonds

® Numbers in parentheses indicate the coded levels of factors under study
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Table 3 ANOVA for quadratic model in AutoDock4.2 based response surface study of BACE-1 inhibitors

Source Sum of squares DF" Mean square F value p-value Prob>F
Model 155.65 20 7.78 55.75 <0.0001
Factor

A 1.03 1 1.03 7.38 0.0118
B 0.34 1 0.34 241 0.1332
C 4.07 1 4.07 29.16 <0.0001
D 0.092 1 0.092 0.66 0.4258
E 136.07 1 136.07 974.69 <0.0001
AB 2.25E-004 1 2.25E-004 1.612E-003 0.9683
AC 0.59 1 0.59 4.19 0.0513
AD 1.97 1 1.97 14.14 0.0009
AE 0.031 1 0.031 0.22 0.6436
BC 7.225E-003 1 7.225E-003 0.052 0.8219
BD 0.22 1 0.22 1.58 0.2201
BE 0.012 1 0.012 0.087 0.7709
CD 0.51 1 0.51 3.66 0.0672
CE 6.4E-003 1 6.4E-003 0.046 0.8322
DE 2.5E —005 1 2.5E —005 1.791E-004 0.9894
A? 0.07 1 0.07 0.5 0.4863
B? 7.004E-004 1 7.004E-004 5.017E-003 0.9441
C? 0.28 1 0.28 2.03 0.1666
D? 0.12 1 0.12 0.85 0.3643
E? 7.67 1 7.67 54.92 <0.0001
Residual 3.49 25 0.14

Lack of fit 2.66 20 0.13 0.80 0.6747
Pure error 0.83 5 0.17

Cur total 159.14 45

" Degrees of freedom

to the docking output (Fig. 5). The perturbation plot illustrates
the resulted binding energy as each variable moves from the
chosen reference while all other factors are held constant at the
middle of the design space (coded zero level) [35].

Validation of optimized docking parameters

The optimum docking condition in terms of studied effec-
tive factors was applied to further correlate the docking
results with experimental biological data of an external data
set (Fig. 2). For GA run, the optimum value was found to be
100 (Table 2) which is minimally required for generation of
all the possible conformational clusters. It should be noted

that for apo crystallographic files, higher number of GA
runs could be considered. Population size would not make
any significant variation in response and the default
value of the software (150) which was in accordance
with the optimized value could be applied. In the case
of maximum number of evaluations, it was found that
for ligands bearing four or less RTBs (20HL, 20HK,
and 20HM), 2.5x10° evaluations could meet the
requirements for achieving optimized binding mode.
Ligands containing five or more RTBs were subjected
to 1.0x10” evaluations (2VAS, 20HT, and 20HU). Tor-
sion degrees for ligand were found to be five in the
case of ligands possessing four RTBs and this value

Table 4 Statistic values for the full quadratic model from ANOVA analysis in AutoDock4.2 based study of BACE-1 inhibitors

Standard deviation = Mean  Coefficient of variation ( %)

PRESS

R-squared  R-adjusted  Predicted R-squared  Adeq precision”

0.37 —-836 447 11.84

0.9781 0.9605 0.9256 27.099

Adeq precision: signal to noise ratio
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Fig. 3 Interaction plot for GA Design-Expert® Software :
runs X torsion degrees/step term gﬁ_lcdi?r‘]rgcwmg: Interaction
in RSM model for % D: torsion (degree/step)
AutoDock4.2 based study of g cl
BACE-1 inhibitors, assigned Lesign
coded factor levels for popula- X1 = A: Number of GA ®
tion size (0), maximum number X2 = D: torsion (degree/step)
of evaluations (0) and number Actual Factors i
of ligand rotatable bonds (0) are Ei F’OFJU:?“ON Silzea\t =0.00 41
:max No. evaluations = 0.
150, 2500000 and 6, E: number of rotatable bonds = 0.00 °
respectively
" D--1.00 g
S0 Binding energy
(kcal/mal) il
o
-9 .
-10
T T
-1.0 -0.5 0.0 0.5 1.0

A: Number of GA

was also used for our regression study. As was men-
tioned above, ligands under study are representatives of
cognate ones; hence the effect of this factor is of less
importance compared to non-cognate ligands.

Selection criteria for BACE-1 inhibiting external data set
were based on the following items:

— Availability of a holo crystallographic PDB structure
with reliable resolution.

— Availability of a relevant experimental biological data.

— RTBs in a range of studied levels.

Top ranked docking binding energies in each trial were
chosen for further correlation with in-vitro FRET-based
experimental biological data (Fig. 6) [36, 37]. All the dock-
ing results produced RMSD values below 2. After

correlation, Eq. 1 was obtained for BACE-1 inhibiting ac-
tivities represented as pICso values. Our results revealed a
high correlation between docking outputs and in vitro anti-
Alzheimer activities. Binding energy (AG,) was the sole
descriptor variable.

pIC50 = —0.7476 AG, — 1.1807 (R* =0.9131) (1)

The predicted binding energies of these inhibitors into the
active site of receptor are listed in Table 5.

Negative control

We performed a negative control to further validate the
suggested optimization model. For this purpose, two

Fig. 4 3D surface plot for
genetic algorithm runs x ligand
torsion degrees/step RSM
model term in AutoDock4.2
based study of BACE-1 inhibi-
tors, assigned coded factor lev-
els for population size (0),
maximum number of evalua-
tions (—0.03) and number of li-
gand rotatable bonds (0) are
150, 2432500 and 6,
respectively

Design-Expert® Software
Factor Coding: Actual
Binding energy

-5.87

-12.1

X1 = A Number of GA runs
X2 = D torsion (degree/step)

Actual Factors

B: Population size = 0.00
C: max number of evaluations = -0.03
E: number of RTB = 0.00

Binding energy

A: Number of GA runs  -0.50

—"0.50

—
7050

0.00

. ot D: torsion (degree/step)

-1.00 1.00
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Fig. 5 Perturbation plot of
docking binding energy versus
number of genetic algorithm
runs (a), population size (b),
maximum number of
evaluations (¢), torsion degrees
for ligand (d) and number of

Design-Expert® Software

Factor Coding: Actual
Binding energy

Actual Factors

A: Number of GA runs = 0.00

B: Population size = 0.00

C: max number of evaluations = 0.00
D: torsion (degree/step) =

E: number of RTB = 0.00

rotatable bonds in ligand (e)

platforms were utilized. First, self-docking of ligands bear-
ing more than four rotatable bonds (2VA6, 20HU, and
20HT; Fig. 6) were carried out in a defined condition for
ligands possessing four or fewer RTBs (Table 6). RMSD
was selected as response for this assay due to its robustness
as an appropriate criterion in self-docking studies.

RMSD values obtained for various self-docking proce-
dures (Table 6) indicate that the optimized condition de-
scribed for docking of a typical ligand with definite
number of active torsions (RTBs<4) may not support desir-
able results (accurately oriented binding poses) for more
flexible BACE-1 inhibiting scaffolds (RTBs>4). However
this negative control demonstrates the lack of any extrane-
ous significant confounding effects on response.

One expectable point is that the amount of departure from
reference structure (RMSD) is more pronounced for ligands
designated by PDB codes 2VA6 (RTB: 7), 20HU (RTB: 8),

Table 5 Docking results for studied (3-secretase inhibitors with
BACE-1 target

PDB  No. Estimated Experimental Experimental
code  rotatable binding Energy  ICso" (uM)  pICso
bonds in (kcal.mol™)
ligand
2VA5 5 -7.52 130 3.89
2VA6 4 —10.54 0.38 6.42
20HL 1 -5.35 2000 2.70
20HK 1 —5.47 2000 2.70
20HM 4 —6.17 310 3.51
20HT 5 -7.47 9.1 5.04
20HU 8 —8.18 42 5.38

* All the reported ICsgs are on the basis of FRET assay protocol
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and 20HT (RTB: 5) in the external data set. These results
confirmed that flexibility of docked ligands is a major
limitation in a simulation process. Higher number of energy
evaluations along with higher number of genetic algorithm
runs (significant model terms in AutoDock) would be re-
quired to support more accurate docking results in more
flexible scaffolds. Our negative control analysis showed that
self-docking of BACE-1 inhibitors bearing more than four
RTBs could not be properly validated using 2.5 x 10° energy
evaluations in Autodock4 program and to get validated
results, energy evaluations need to be increased.

In the second strategy for negative control, we per-
formed a self-docking simulation of selected ligands
(Fig. 6) on the grid box including the whole BACE-1
structure (blind docking) ignoring the position of active
site. The results are shown in Table 7. In a typical blind
docking procedure, accurate re-orientation of a cognate
ligand in the BACE-1 active site could be affected to a
significant amount using pre-optimized levels of dock-
ing factors. An expectable feature of this study is the
less populated top conformation clusters in the case of
blind docking. Furthermore; RMSD values were also
affected. Our results showed that accurate prediction of
the active site in blind docking is a major bottleneck
which may be unraveled at least to some extent by
increasing the number of GA runs and number of ener-
gy evaluations in a self-docking process.

Conclusions

When multiple variables are involved in a typical docking
study, optimization of the system using a conventional
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approach of maintaining other variables involved at constant
level would not determine the order of factor effects on
response and combined interaction effects on docking pro-
cess may not be identified. Also the method would be time
consuming and probably requires a costly route. Therefore,
developing mathematical models describing the relationship
between the response and independent variables, in which
the significance of individual factors and multifactor inter-
actions can be determined would be desirable. Box-
Behnken method could be applied to optimize the docking
simulation of BACE-1 inhibitors into receptor active site
while at the same time taking all of the evaluated variables

and their interactions into consideration simultaneously. The
optimized docking condition showed that the number of
ligand active torsions is a critical factor in final docking
results while maximum number of evaluations may be the
most determinant AutoDock parameter in docking free en-
ergy of binding and RMSD from reference structure.
Obtained optimization levels were validated via regression
of docking outputs with an external data set possessing

Table 7 Negative control (blind docking) and positive control (active
site-oriented docking) in validation of optimized docking model for
BACE-1 inhibitors

Docked No. No. of No. of RMSD RMSD
Table 6 Negative control and positive control in validation of opti- ~ PDB code RTBs conformation conformation (A) A)
mized docking model for BACE-1 inhibitors clusters with clusters with (positive (negative

RMSD<2 A RMSD<2 A control) control)

Docked No. RMSD from reference RMSD from reference out of 100 out of 100
PDB RTBs structure (A) (positive structure (A) (negative (positive (negative
code control)® control)® control) control)
2VA5 4 1.29 1.29 2VA5 4 95 50 1.29 1.48
2VA6 7 1.45 3.00 2VA6 7 88 27 1.45 3.42
20HL 1 0.71 0.71 20HL 1 100 55 0.71 1.61
20HK 1 0.65 0.65 20HK 1 100 60 0.65 0.99
20HM 4 1.12 1.12 20HM 4 91 55 1.12 1.73
20HT 5 1.87 2.16 20HT 5 85 46 1.87 2.54
20HU 8 2.00 2.87 20HU 8 63 29 2.00 3.70

*For a positive control, suggested optimized levels of significant
factors were used (1.0x107 energy evaluations and 100 GA runs for
ligands with RTBs>4 and 2.5%10° energy evaluations and 100 GA
runs for ligands with RTBs<4)

For a negative control, suggested optimized levels of significant
factors for ligands with RTBs<4 were used

* For a positive control, suggested optimized levels of significant
factors were used (1.0x107 energy evaluations and 100 GA runs for
ligands with RTBs>4 and 2.5%10° energy evaluations and 100 GA
runs for ligands with RTBs<4)

° For a negative control, suggested optimized levels of significant
factors for active site-oriented docking were used
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known biological data. Docking outputs exhibited high cor-
relation coefficient with in vitro anti-Alzheimer activities
(R*=0.9133). Future perspectives may be directed toward
other enzymes or considering more diverse receptor-based,
docking-based or ligand-based factors in optimization
procedures.
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